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ABSTRACT

Capitalizing on the rapid advances of mainframe computer technology to date, this study

integrates into one comprehensive Monte Carlo simulation a vast array of previously defined and

substansively interrelated research studies spanning seven decades of methodological inquiry

into the robustness of the analysis of variance (ANOVA) and analysis of covariance (ANCOVA)

statistical procedures. Three sets of balanced ANOVA and ANCOVA designs (using equal group

sizes of 15, 30 or 45) and one set of unbalanced ANOVA and ANCOVA designs (where the first

group had an n of 15, the second group 30 and the third group 45) were simulated. Within each

set of ANOVA analyses, violations of normal shape (including both skewed and non-mesokurtic

dependent vectors) were included, as was three degrees of heterogeneity of group variances.

Each set of ANCOVA analyses included the ANOVA violations, as well as those perturbations

unique to ANCOVA: violations of homogeneity of group regression slopes and violation of the

assumption that the covariato be normally distributed. Each data set violation was simulated both

in isolation and in combination with one or more of the others: in the end resulting in 665 unique

ANOVA or ANCOVA F sampling distributions. A modified version of the traditional methodology

was developed and implemented - one which allowed for the systematic control of extraneous

var!ables that traditionally have confounded the results of previous simulations.

As has been the case in previous research, the unbalanced designs almost always

produced statistically invalid F ratios in the presence of any data set assumption except some

situations that involveed only the perturbation of shape. When robustness was tested in the

balanced ANOVA and ANCOVA situations, however, a degree of robustness far beyond that

suggested by Glass, Peckham and Sanders (1972) was found, even in most situations where

heterogeneity of variance was coupled with heterogeneous regression slopes and a skewed

covariate. Robustness was found even when the ratio of the largest to smallest group variance

was five.

This finding is particularly important to researchers in education, the social sciences and

the behavioral sciences in light of the fact that the most common data set violation in the balanced

design is heterogeneity of group variances. If a researcher can ascertain that their dependent

variable's skew and kurtosis falls within the appropriate 95% confidence bands, then the ratio

between the highest and lowest group variances can be as high as five without jeopardizing the

robustness of ANOVA or ANCOVA results.
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INTRODUCTION

Within a scientific discipline, theories unify the existing knowledge base as well as provide

hypotheses for further extension of that knowledge base. Theories are abstractions, and as such

are represented by the construction of conceptual or mathematical models; models which serve

to abstract the subject under study while preserving the original structure of the system. By

abstracting the subject into a succinct, parsimonious model, it is possible to determine how

changes in one (or more) parts of a model might affect the system as a whole. Oftentimes these

changes are impossible to observe and document in the real world, yet by manipulation of the

model it is possible to shed light on both the effects of such change and the functioning of the

model itself.

There are two types of models that can be developed: deterministic and probabilistic.

Deterministic models are defined so that virtually 100% of the variance in the dependent variable

can be explained by the independent variable(s) included in the model. For instance, "E=mc2"

can be considered a deterministic model if it can produce accurate estimates of E with little or no

error. These models are seldom used in education, psychology or the social sciences.

Concerning this, Lord and Novick (1968) write "deterministic models have found only limited use

in psychology... because for problems of any real interest... we are unable to write an equation

such that the residual variation in the dependent variable is small." (p. 23).

Instead, probabilistic models are more common in these disciplines. These models are

not powerful enough to eliminate unexplained variation, although strategic methods are often

used to minimize the proportion of unexplained variance while maximizing the amount explained.

The general linear model (GLM) is a classic example of a probabilistic model. It has been argued

that use of one specific form of the GLM, the analysis of variance, is the most widely used

statistical procedure in education and the social sciences (Halpin and Halpin, 1988). Like other

statistical models, those who use the GLM must assume that the prerequisite conditions for using

the model actually do exist within their data set. However, a researcher seldom stumbles into a

situation where all prerequisite conditions are perfectly met. Therefore, it is necessary to examine

the statistical model itself, in its various forms, to determine to what extent real world conditions

may depart from the assumptions inherent in the model before the (LM should be abandoned in

favor of other statistical models.

The Nature of Monte Carlo Experimentation

There are two different kinds of mathematical research: theoretical and experimental.

The main concern of theoretical mathematics is abstraction and generality. The theoretical
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mathematician will write arguments in the form of symbolic expressions or formal equations which

will abstract the essence of a problem, thus revealing the underlying structure. However, this

strength is also its inherent weakness: the more general arid formal the language, the less able

the theory is at providing a numerical solution to a specific situation (Hammers ley and Handscomb,

1967). The Monte Carlo approach allows the exploitation of the strengths of theoretical

mathematics while avoiding the weaknesses inherent in it. Using this approach, experimentation

replaces theoretical exploration when the latter tatters.

Using Monte Carlo Simulation to Explore the Robustness of the General Linear Model

The GLM possesses a number of different forms, all of which provide an abstracted and

succinct statement of the relationship between variables carefully chosen by research

practitioners to reflect real world phenomena. Though the model is frequently used, the data

collected for analysis never perfectly adheres to all of the assumptions of the model. Thus it

becomes a question of how much difference there is between the conditions the model was

designed to handle and the actual conditions that exist in a particular research situation. If the

difference is within a "tolerable range," then use of one of the forms of the GLM should produce

information that is statistically robust in its treatment of the relationship between variables. It is only

when the data collected exceeds that "tolerable range" that alternatives to the GLM must be

considered. Theoretical mathematics can be used to define the general nature of the problems

that emerge when the GLM is used inappropriately, however it is unable to provide us with the

precise limits of this "tolerable range."

Monte Carlo simulation provides valuable supplementary information about the problems

that develop when assumptions underlying the GLM are violated. Using this methodology, it is

possible to numerically define the degree of tolerance (i.e., robustness) that specific forms of the

GLM have under real world research conditions.

This research is an empirical study of the effects of violations of the assumptions for two

specific forms of the general linear model: the oneway, fixed-effects analysis of variance and the

analysis of covariance using one independent variable and one concomitant (i.e., covariate).

These two methods are used extensively in educational and psychological research, and serve as

the mathematical foundation for more complex extensions of the GLM as well.

Unique Contributions of this Research

This study offers three unique contributions to the existing literature studying the

appropriate use of ANOVA and ANCOVA in educational and psychological research. First, this

study directly tested Harwell, Hayes, Olds and Rubinstein's 1990 claim that inflated type I error

rates result when the ratio of largest to smallest group variances in the balanced design is as small
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as two against the standard established by Glass, Peckham and Sanders (1972) that in balanced

designs, one need only be concerned about the effects of heterogeneity of variances if the ratio

of largest to smallest variances is at least three. Second, the study combined a number of

different violations both separate!y and in combination, thereby examining the effects of data set

violations at the zero, first, second, third and fourth orders. Most previous studies have been

limited to exploration at the zero and first orders only. Finally, this study allowed for the systematic

control of random noise that has confounded the results of past studies - thus providing findings

that are more precise than those found in previous simulations.

REVIEW OF THE LITERATURE

The simplest prototype of the general linear model (GLM) is the t-test for two independent

samples, which tests for mean differences between two groups. The oneway, fixed-effects

analysis of variance (ANOVA) is the logical extension of this t-test; broadened in form to allow for

the analysis of two or more groups. Both of these statistical procedures involve analysis of the

effects of one discrete independent variable on a single, continuous dependent. In the oneway

ANOVA, F represents the ratio of the variance in the dependent variable that can be explained by

the researchers data to that variance left unexplained. The analysis of covariance (ANCOVA) is a

logical extension of the oneway ANOVA, applicable when a third, continuous variable (refered to

as the covariate or concomitant variable) is known to have a significant effect on the dependent

variable, while having little or no effect on the independent variable. When ANCOVA is

appropriate, the researchers goal is to probe the effects of the independent variable on the

dependent after removing the influence of the concomitant. To do this, ANCOVA first removes all

variation in the dependent variable that is a function of the concomitant. Then, using these

"adjusted scores," ANCOVA effectively reanalyzes the data for mean aifferences between the

groups that make up the independent variable.

The two forms of the GLM studied in this simulation are the oneway, fixed-effects ANOVA

and the one concomitant ANCOVA. Most researchers in this area accept the premise proposed

by Cochran (1957) and Winer (1962), who assert that the relationships found in the basic oneway

ANOVA and even the more basic t-test for two independent samples carry over into the ANCOVA

extension. Therefore, this literature review will contain discussion of relevant theoretical and

empirical research involving the use of all of obese statistical models.

Statistical Models and the Assumptions Inherent Within Thern

When they are initially developed, statistical models (ie, procedures) are designed to be

used under a specified set of conditions (that is, assumptions about the data set that the model is
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used to describe). These conditions are designed to balance creditability (the ability to process

data in a form that will be useful to researchers) with manageability (the technique's ability to

simplify many mathematical derivations and operations). ;aid results are to be obtained, the

researcher must assume that his or her data set is similar to the type of data set required by the

statistical procedure chosen.

Seldom, however, do data sets adhere perfectly to the assumptions a statistical model

was developed to handle. According to Glass, Peckham and Sanders (1972), the question that

the researcher must ask in reference to the data collected is not whether the assumptions are

satisfied, but instead, are the violations that do occur extreme enough to compromise the validity

of the results?

Box and Anderson (1955) argue that to fulfill the needs of the researcher, statistical

criteria should: (1) be sensitive to change in the specific factors being tested (in other words, they

should be powerful) and (2) they should be insensitive to changes in extraneous factors of a

magnitude likely to occur in practice (in other words, they should be robust).

Literature Concerning the Assumptions of the Oneway. Fixed-Effects ANOVA

In 1972, Glass et al. identified three assumptions of concern for the ANOVA. The first of

these is additivity - that is, each observation must be the simple sum of three components: the

grand mean (IL), the effects of the treatment (aj) and the error associated with the individual

observation (eij). The presence of additivity is important because the least amount of information

is lost in an additive model (Cochran, 1947). The second assumption is that the sum of the

treatment effects equal zero. Glass et al. argue that this assumption is actually a mathematical

restriction adopted to allow for a unique solution to the least-squares equation, rather than an

assumption per se. Finally, the third assumption is that errors made while using the model should

be normally distributed with a population mean of zero and a variance of 2. This third assumption

involves the nature of the errors in the population from which the data originates, and takes three

distinctive forms: (a) normality of the error distribution, (b) homogeneity of group variances, and

(c) the independence of errors. Independence of errors is, of course, a methodological concern.

Therefore it is forms (a) and (b) of the third assumption that are the subject of most theoretical and

empirical research into ANOVA.

Homogeneity of Variance

This assumption was first identified in the classical 1908 paper "The Probable Error of the

Mean" by The Student (Gossett), however, the publishing of empirical results in this area would

wait until the work of Hsu (1938, as cited by Scheffe, 1959). Active research concerning the

assumption of homogeneity of variance has continued even until today. Many of the published
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studies suggest that the F test with equal sample n's Is robust when faced with the single violation

of the assumption of unequal group variances as long as the ratio of the largest to smallest group

variances does not exceed three (e.g. Glass et al, 1972) Some studies (e.g. Shields, 1978)

suggest that the degree of robustness present may be offset by the loss of power that is the

result of using a parametric test when heterogeneity of group variances is present. The validity of

the F ratio, however, is questionable in situations where both the sample sizes and variances are

unequal. When cell sizes are unequal and two groups are involved, research suggests that

inflated type I error rates occur when the larger group size is paired with the smaller group variance

(e.g., Scheffe", 1959). But the most surprising results of recent years, however, came in a meta-

analytic study conducwd by Harwell, Hayes, Olds and Rubinstein. They suggest that even when

sample n's are equal, inflated type I errors are possible when the ratio of largest to smallest

variance is as small as two. Thus, Harwell et al. (1990) write,"... researchers should not rely on

equal sample sizes to neutralize the effects of heterogeneous variances" (p. 23).

Normality of the Distribution of Errors

Research dating back to the 1920's has investigated violations of this assumption.

Games and Lucas (1966) suggest that skewed distributions are a greater threat to robustness

than leptokurtic or platykurtic distributions, however this claim is not consistent with Pearson's

1929 power analysis among balanced designs. Assuming a distribution with a mean of zero and

variance of one, the th'Amoment (from which skewness is mathematically derived) is defined as

follows:

03
3

while the fourth moment (used to calculate kurtosis) is defined as:

[14
b2

4

Norton (1952, cited in Glass et al., 1972) examined the degree of skewness in data distributions

and found a moderately skewed distribution as having a skew value around .5, while the skew

value for an extremely skewed distribution was around 1.0. A perfectly symmetrical distribution (in

other words, a distribution with no skew) has a skew of 0. A perfectly mesokurtic distribution has a

kurtosis of 0. Distributions with kurtosis significantly greater than zero are leptokurtic, while those

significantly less than zero are platykurtic.

Looking at the effects of skewness in the single sample t-test, Pearson (1929) and

Scheffe' (1959) found that if the difference between the sample and population mean is positive

and the distribution is positively skewed, then actual power will exceed nominal power. However,
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if the difference between the sample and population means is positive and the distribution is

negatively skewed, then the actual power Is less than nominal power. Games and Lucas suggest

that F-test results may improve when the procedure is conducted on data that has highly

leptokurtic error distributions, while F test results for data with platykurtic error distributions tend to

be adversely affected.

Extension of ANOVA Assumptions to ANCOVA

The simplest form of the analysis of covariance (which consists of one independent, one

concomitant and one dependent variable) Is an extension of the oneway, fixed-effects ANOVA.

According to Cochran (1957) and Winer 1962), the assumptions previously discussed in regards

to ANOVA apply to ANCOVA as well, provided that the concomitant variable is normal. It is for this

reason that empirical testing of either of these single violations in the ANCOVA case is scarce.

The sensitivity of the F-test in ANCOVA to departures from normality in the dependent

variable depends on the degree of nonnmaliti that is found in the concomitant (Potthoff, 1965).

Similar results were found in Atiquallah's theoretical treatise (1964): if X (the concomitant) is a

normally distributed random variable, nonnormality in the dependent variable has little effect on

the F-test. If, however, the concomitant is a random variable that is not normally distributed, then

there will appear an increased sensitivity of the F-test to nonnormality in the dependent variable.

The Seven Assumptions of the Analysis of Covariance

Elashoff (1969) and McLean (1979, 1989) report the following seven assumptions

associated with ANCOVA: (1) the cases are assigned at random to treatment conditions; (2) the

covariate is measured error-free (that is, there is a perfect reliability in the measurement of the

covariate); (3) the covariate is independent of the treatment effect; (4) the covariate has a high

correlation with the dependent variable; (5) the regression of the dependent variable on the

covariate is the same for each treatment group; (6) for each level of the covariate, the dependent

variable is normally distributed; and (7) the variance of the dependent variable at each given value

of the covariate is constant across treatment groups. These assumptions can be classified as

falling into one of two categories: (a) assumptions that are concerned with the research design

and sampling (methodological assumptions) and (b) assumptions that are concerned with the

numerical form of the data set and the population from which it came (data set assumptions).

Methodological Assumptions

Two of the ANCOVA assumptions deal with the research design and sampling: (1) the

cases era assigned to random treatments (randomization) and (2) the covariate has perfect

reliability. Concerning the issue of randomization, Evans and Anastasio (1968) distinguish three
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separate situations: (1) individuals are assigned to groups at random after which the treatments

are randomly assigned to the groups; (2) Intact groups are used, but treatments are randomly

assigned to the groups; and (3) intact groups are used where treatments occur naturally rather

than being randomly assigned by the researcher. They maintain that ANCOVA is appropriate for

the first situation, can be used with caution In the second, but should be abandoned altogether

(perhaps in favor of the less restraining `actorial block ANOVA design) in the third. Two reasons

are provided for their recommendations: first, it is never quite clear whether the covariance

adjustment has removed all of the bias when proper randomization has not taken place, and

second, when there are real differences among the groups, covariance adjustments may involve

computational extrapolation.

Raajimakers and Pieters (1987) and also McLean (1974) have addressed the issue of an

unreliable covariate. Raajimakers and Pieters note that there are two ways that the researcher can

conceptualize covariate reliability. If one assumes that the dependent variable is linearly related to

the observed value of the covariate, then the ANCOVA results will retain their statistical validity. If,

on the other hand, it is assumed that the dependent variable is linearly related to the underlying

true score on the covariate (rather than the sample of scores that were actually observed), then

the resulting F ratio will produce biased results. McLean's research, however, suggests that the

issue of perfect reliability becomes less of a threat to the validity of the F ratio if there is an

Independence of the covariate measure and the treatment groups.

The Covariate's Relationship with the Independent and Dependent Variables

The covariate should have no significant correlation with the Independent variable, yet be

highly correlated with the dependent variable. Feldt (1958) recommends the use of a covariate

only when the zero-order correlation between the covariate and the dependent variable is r z 0.6.

McLean (1979, 1989) sees the relationship between the covariate and the independent variable

to be the most fundamental of all of the assumptions, and suggests thatANCOVA not be

performed until after the data has been tested to see if it meets this assumption. If this

assumption is not met, the F-test results are not invalidated as such, however it reduces the

ANCOVA's efficiency to slightly below that of doing a simple oneway ANOVA on the same data.

Homogeneity of Group Regression Slopes

This assumption requires that the slope of the regression line between the concomitant

and dependent variables be the same for all levels of the grouping variable. The problem, if this

assumption is violated, is analogous to trying to interpret main effects in the presence of

significant interactions in an n-way factorial ANOVA. If heterogeneous regression slopes are

10
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suspect, the researcher would be wiser to use the randomized block ANOVA rather than

ANCOVA.

Peckham (1968), McClaren (1972) and Hamilton (1972) have investigated the effects of

violation of this assumption. Peckham varied regression slopes, the number of groups, and the

sample size, though he limited himself to equal groups. Values of the concomitant variable were

fixed and chosen to conform as closely as possible to a normal research situation. He found that

there were small discrepancies in the actual vs. theoretical significance levels when the slopes

were varied. He also found that as the degree of heterogeneity of the regression slopes

increased, the heterogeneity of group variances likewise increased, and therefore the empirical

rate of the Type I errors decreased from what is suggested by normal theory.

McClaren found similar results to Peckham when he looked at equal samples; however he

extended his study to unequal groups. With the unequal group n's, McClaren found results

similar to those reported by Box (1954) and Scheffe' (1959); that is, when the smallest regression

coefficient and the largest variance were combined with the smallest sample size, the empirical

significance levels were biased in a non-conservative direction, and likewise, when the pairings

were reversed, the test became conservative.

When Hamilton conducted his study, he limited his analysis to two groups. He used the

same combination of equal sample sizes, number of groups, and regression coefficients as

Peckham and McClaren, yet failed to replicate their findings. Whereas Peckham and McClaren

observed a conservative bias in empirical alpha levels when sample n's and regression slopes

were heterogeneous, Hamilton's values were close to nominal alpha. It Is unclear why there is a

discrepancy in the results of the three studies (Shields, 1978). Theoretical work by Atiquallah

(1964). however, suggests that ANCOVA should be robust enough to the violation of the single

assumption of homogeneity of regression in situationsi,:nere the sample size is large and the

means of the concomitant variable(s) are equal. Otherwise, Atiquallah suggests, the test should

be biased in a conservative direction.

Homogeneity of Variances and Nonnormal Biter Distributions in ANCOVA

As has been discussed previously, most researchers simply accept the claim by Cochran

(1957) and Winer (1962) that the effects of the simple ANOVA violations are equally viable when

the model is extended to include one or more concomitant variables.

RESEARCH METHODOLOGY

Goal of the Research

This research is an exploratory study of the effects of both single and compound

violations of the mathematical conditions (i.e., assumptions) underlying use of the analysis of

11
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variance and covariance designs. Monte Carlo methodology was used, allowing for the empirical

investigation of problems identified by theoretical mathematicians as potential threats to the

robustness of the ANOVA and/or ANCOVA results under conditions common to research

practitioners in the behavioral sciences, social sciences and education. Because of advances

both in methodological techniques and computing technology, the capability has emerged to

study this topic in depth, yet with a global perspective not possible just a few years ago.

Capitalizing on these advances, this study has integrated into one comprehensive laboratory

experiment a vast array of previously defined and substantively interrelated research avenues that

have spanned across seven decades of statistical inquiry.

Specifically, this research explores the following violations that can occur in a researchers

data set: heterogeneity of group variances, skewness, non- mesokurtic distributions, and (in

ANCOVA) heterogeneity of regression slopes and use of a skewed concomitant.

InfaralatiamalIDutitafisopaing.LayironmenLincilta
Programs Written to Conduct the Simulations

The statistical simulations were conducted on a Digital Equipment Corporation VAX 6430

mainframe computer with 128 M-bytes of MOS memory and 32 gigabytes of disk storage space.

The simulation itself consisted of two sets of eight FORTRAN 77 programs written especially for

this research: the first set of programs (phase one of the simulation) conducted simulations that

used a normally distributed covariate vector, while the second set of programs (phase two of the

simulation) conducted the same analyses using a skewed covariate vector. The data generated

by the experiments in phase one were used again In phase two with one exception: the

concomitant vectors generated for phase one were mathematically perturbed to produce the

skewed concomitant vectors needed for phase two.

The Simulation Process. Part I: Within a Single Replication of an Experiment

Four experimental situations were simulated in each of the two phases of the simulation:

three balanced designs (i.e., equal sample sizes) and one unbalanced design (i.e., unequal

sample sizes). For explanation purposes, these four experimental situations will be refered to in

this text as experiments A, B, C and D. Experiment A tested the ANOVA and ANCOVA F statistic

when three equal groups of size 15 were used. Experiment B involved simulation using three

equal groups of size 30, while experiment C tested the F statistic when three equal groups of size

45 were used. The fourth condition, experiment D, involved simulation of the ANOVA and

ANCOVA F statistic when three unequal sized groups (n's = 15, 30 and 45) were used.

Experiments A, B and C of phase one were used to generate the data. Experiment D, on

the other hand, did not generate data. Instead it imported grouping, concomitant and dependent
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vectors from the data generating experiments, so that the firstgroup had a size of 15, the second

group 30 and the third group 45. The use of data in experiment D which was not independent of

the data used in experiments A, B and C was to facilitate the comparison of the balanced and

unbalanced design results. By using the same data, a major source of sampling -ror was

eliminated; sampling error that otherwise might confound interpretationof the results. Likewise,

phase two of the study (for both the balanced and unbalanced designs) imported data that was

created in the data generating experiments of phase one with only one change: the concomitant

vectors, which were normally distributed when they were originally created in phase one, were

perturbed to create a moderately skewed covariate.

The data generated for experiments A, B and C were created using the International

Mathematical and Statistical Libraries (IMSL) subroutine RNVMN, a subroutine which is designed

to create multivariate normal distributions with means equal to zero, standard deviations equal to

one, and correlations between vectors that can be specified beforehand by the user. Data for

each treatment level were created separately using IMSL. This made it possible to obtain the

unequal group regression slopes desired for the second concomitant vector. For the 'irst

concomitant vector, the correlation between all woups and the IMSL created dependent variable

was set at r = 0.707, thus simulating homogeneity of regression slopes. For the second

concomitant, heterogeneity of regression slopes was simulated by having IMSL create

concomitant vectors for group 1 that had a correlation of r = 0.6 with group l's dependent vector,

a correlation of r = 0.707 between the group 2 concomitant and dependent vectors, and r = 0.8

between the third group's concomitant and dependent ve: ,ors.

The next step of the data creation process would require that duplicate copies of the

dependent vector be created and then perturbed in a systematic fashion to simulate specific slew

and/or kurtotic conditions. Therefore, it was imperitive that the originally created vectors

themselves have the proported mean, variance, skewness and kurtosis. This was accomplished

by building a testing procedure into the data generating FORTRAN programs.

By using this testing procedure, dependent vectors created by IMSL were tested to see if

their skew and kurtotic values fell within the 95% confidence bands that surround zero skew and

kurtosis for the specific group size. Therefore, for experiment A (where the group size was 15), all

dependent vectors generated by IMSL were tested to determine if their skew was between

-1.137 and 1.137, while the kurtosis was tested to see if it fell between -4.038 and 4.038. If either

value was not within these limits, then the data created by IMSL was discarded, and new data

created and tested. Likewise for experiment B (n = 30), skew values were tested to assure that

they fell between the values of -0.837 and 0.837, while kurtosis values were checked to assure

that they were between -3.478 and 3.478. For experiment C, confidence bands for skew were

-0.693 and 0.693, while they were -3.205 and 3.205 for kurtosis. For all of the data generating

15
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experiments, the data was retained only when both the skew and kurtosis values of the

dependent vectors created by IMSL fell within these limits.

These checks assured that the base vectors, (that is, those created originally by IMSL)

were normally distributed, with no significant skew or kurtosis. This, in turn, allowed for

mathematically valid perturbations to be performed on them. The checks do, however, represent

a departure from the sampling procedure characteristic of more traditional Monte Carlo studies.

Using the more traditional approach, parent populations with the desired mathematical

characteristics are created. Out of these parent populations, repeated samples of the desired

size are randomly selected and tested. While this methodology is more generalizable because of

its ability to simulate the central limit theorem, it also allows the inclusion of samples with skew

and/or kurtosis radically different from what they are proported to be. Therefore, when

differences between the empirical results and normal theory surface, it is unclear to what degree

these differences are the result of the known mathematical characteristics of the parent

population, and at what point they become the result of selected samples that, as the result of

pure chance, possess mathematical characteristics far different from their parent population.

After IMSL created acceptable concomitant and dependent vectors, phase one of the

simulation required that the normal dependent vector be duplicated then algebraically perturbed

to simulate 27 different mathematical conditions. Distortions of distributional shape were imposed

on the data first. This was done using Fleishman's method (1978), which uses the following

function:

Y = a + bX + cX2 + dX3

where the coefficients b, c and d are obtained by consulting a special table compiled by

Fleishman, and the coefficient a has the same absolute value as the coefficient c, but the

opposite sign. Using this polynomial expression, the base dependent vectors values were

substituted for X, while the resulting Y values formed a distribution with the desired shape.

Use of Fleishman's function allowed the desired combination of skew and kurtosis values

to be created within a tolerable margin of error without distorting the original mean or standard

deviation. The originally created (ie., base) dependent vector was normal, with no skew and

kurtosis. After Fleishman's formula was imposed on duplicate copies of the original dependent

vector, the following combinations of skew and kurtosis were simulated: moderately skew (skew =

0.5, kurtosis = 0), platykurtic (skew = 0, kurtosis = -0.5), leptokurtic (skew = 0, kurtosis = 2),

moderately skewed and platykurtic (skew = 0.5, kurtosis = -0.5), moderately skewed and

leptokurtic (skew = 0.5, kurtosis = 2), and extremely skewed and leptokurtic (skew = 1, kurtosis -

2). This allowed for every combination of skew and kurtosis with two exceptions: an extremely

14
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skewed and platykurtic distribution and an extremely skewed and mesokurtic distribution. Neither

of these shapes were possible to obtain using the coefficients published by Fleishman (1978).

After the algebraic manipulations to distort shape, seven dependent vectors possessing

the characteristics described above were available. Each of these seven vectors were then

duplicated three more times, and the three duplicate vectors for each shape linearly transformed.

Afteer the duplicate vectors were transformed, there were four different group variance ratios for

each of the seven distributional shapes: 1:1:1 (homogeneity of variance), 1:1.5:2 (slight

heterogeneity of variance), 1:2:3 (moderate heterogeneity of variance) and 1:3:5 (extreme

heterogeneity of variance). These inter-group variance conditions were chosen specifically to

allow the testing of Harwell et al.'s 1990 claim (that differences from normal theory may be present

in balanced designs when the ratio between the largerst and smallest variance is 2) against the

standard set by Glass et al. (that differences frcm normal theory do not emerge in balanced

designs until the ratio between the largest and smallest variance is at least 3).

As has been mentioned previously, no new data was generated for experiment D (the

unbalanced design). Instead, a systematic process imported vectors already created.

Specifically, treatment level (group) 1 from experiment A, group 2 from experiment B, and group 3

from experiment C were imported. This created the unequal n simulation where group 1 had an n

= 15, group 2 had an n = 30, and group 3 had an n = 45.

Therefore, in the end 28 different dependent vectors, two concomitant vectors and a

grouping vector were either created for or imported into each replication of all of the experiments.

For the ANOVA simulations, the grouping vector was combined with each of the dependent

vectors, computing 28 F ratios (one for each combination of skew, kurtosis and variance). For the

ANCOVA simulations of phase one, the first concomitant vector was combined with the grouping

vector and each of the 28 dependent vectors to calculate 28 ANCOVA F statistics using a normal

covariate with equal regression slopes. The second concomitant vector was then combined with

the grouping vector and each dependent vector to calculate 28 ANCOVA F statistics using a

normal covariate with unequal regression slopes.

As has been mentioned before, the experiments of phase two used the same data that

was created in phase one, however the normal covariate created in phase one was skewed by

Fleishman's function (skew value = 0.75). Phase two was designed to test ANCOVA when the

only difference was use of a skewed concomitant rather than a normal one. Therefore, only 56

additional F statistics were calculated per replication in this phase: 28 involving use of a skewed

covariate and equal slopes and 28 involving use of a skewed covariate and unequal slopes.

Besides using IMSL subroutines to generate the data, IMSL subroutines were also

incorporated into the FORTRAN programs to calculate the F ratios. Specifically, IMSL subroutine

15
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AONEW was used to obtain the ANOVA F values, while subroutine AONEC was used to calculate

the ANCOVA F values.

The Simulation Process. Part 11: The Global Design

As has been mentioned previously, phase one of the study was designed to test the

ANOVA and ANCOVA F test when a normal covariate was combined with violations of one or more

of the following assumptions: normal skew, normal kurtosis, homogeneity of variances and (in the

ANCOVA) situation, homogeneity of regression slopes. Phase two of the study conducted the

same analyses using a skewed covariate rather than a normal one.

Glass et al. (1972) recommended that the sampling distributions created in Monte Carlo

studies have a minimum of 2000 F ratios each. For the three experimental conditions involving

equal group n's, sampling distributions of 4000 (twice the minimum recommended by Glass et al.)

were created. In the experimental condition involving unequal n's and homogeneity of variances,

F sampling distributions of 4000 F ratios were also created. In the situation where unequal n's

were combined with heterogeneity of variances, however, the combination of variance ratios and

group sizes were varied so that two sets of sampling distributions with 2000 F ratios each were

developed: one set where the largest group variance was combined with the largest sample size

and the other set where the largest group variance was combined with the smallest sample size.

This was done since previous literature suggests that heterogeneity of group variances produces

different effects in the unequal n situation, depending on the combination of sample size and

magnitude of group variances (e.g. Box, 1954, McClaren, 1972 and Scheffe', 1959). The

relationship between sample size and group regression coefficients was fixed for those analyses

that involved unequal group slopes, therefore the process of varying the magnitude of group

variances with the sample size produced the following triple combinations for analysis in the

ANCOVA simulations: (1) the largest group size with largest group variance and largest

regression coefficient, and (2) the largest group size with the smallest group variance and largest

regression coefficient. Previous literature (e.g. Glass et al., 1972, Shields, 1976) suggest that the

additivity of effects should produce dramatic differences in these two combinations.

After running all four sets of experiments in both phases of the simulation, a total of 420

empirical sampling distributions of 4000 F ratios each were created, representing all single and

compound data set violations for the balanced ANOVA and ANCOVA simulations. Another 35

sampling distributions of 4000 F ratios each included all unbalanced ANOVA and ANCOVA

simulations with homogeneity of group variances. Finally, another 210 empirical sampling

distributions of 2000 F ratios each were created, representing all single and compound data set

violations having both heterogeneous variances and unequal sizes.
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Of these 665 F sampling distributions, four ANOVA and four ANCOVA F distributions

were created using data that did not contain any violation under study. These eight sampling

distributions (one ANOVA and one ANCOVA for each of the four experimental conditions A, B, C

and D) served as a baseline against which other distributions could be compared, and served as a

check to make sure that the simulation was operating properly.

Statistical Analysis of the Sampling Distributions

In addition to qualitative evaluation of the sampling distributions, statistical analysis of the

data was performed using the Kolmogorov-Smimov one sample test at thelo< .05 and (where

applicable) 2 < .01 levels of significance. The non-parametric test was employed to compare the

empirical sampling distributions with the appropriate theoretical (i.e., nominal) F distribution at four

key points in the nominal F tail region: .90, .95, .975 and .99. These points, of course, are the

points on the nominal F curve used by practitioners when testing for significance at the 2 < .10,

< .05,2 < .025 and 2 < .01 levels of significance respectively. In addition, the means, standard

deviations, skew and kurtosis values for each of the entire populations of data generated in the

study were calculated and inspected to assure the integrity of the results.

RESULTS

Summarized here are the specific results of the effects of violations of data set

assumptions for the analysis of variance and covariance statistical models. Since the integrity of

the results is dependent on the quality of the data produced, the first section will take a look at

descriptive statistics for the entire population of data produced for this simulation. The second

section will summarize the effects of violations in the ANOVA situation. The third and fourth

sections will summarize the effects of violations on the ANCOVA.

Analysis of the Population Data

All data created in each of the replications of the data generating experiments were

retained in order to verify the integrity of the results. In the actual process of creating the data, the

vectors for each treatment level were created individually then merged with the vectors for the

other treatment levels before ANOVA or ANCOVA could be performed. The population vectors

were checked for each treatment level separately, then the full vectors (which consisted of the

three treatment levels merged together) were also checked. All population vectors, including the

base vectors created by IMSL and the vectors perturbed by use of Fleishman's function were at or

very near their target parameters.
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The size of the populations are worth noting. In their classic 1972 paper, Glass et al.

suggest that populations with the desired characteristics have a minimum of 10,000 points each.

The population N's used In this study were considerably larger than the minimum standard:

180,000 for each of the full population vectors created in experiment A, 360,000 for the full

population vectors created in experiment B, and 540,000 for the full population vectors created in

experiment C. The population statistics for the vectors created to simulate heterogeneous

variances were also checked. As expected, the simple linear multiplication that changed their

variances did not change the vectors means, skew or kurtosis.

Effects of Data Set Assumptions on the Analysis of Variance

For all of the analyses to follow, comparisons were made between the empirical F

sampling distributions and the theoretical (i.e., nominal) F distributions expected using normal

theory. In calculating the values included on these tables, the difference scores recorded on the

table were found using simple subtraction: the number of observed F ratios minus the number

expected using normal theory.

When the group size was 15 and all groups were equal, no empirical sampling distribution

was found to have type I error rates significantly different from what would be expected under

normal theory, although the sampling distribution that was based on an extremely skewed and

leptokurtic dependent vector with extreme heterogeneous variances (variance ratio 1:3:5) came

within one F value of being significant at the f2 < .05 level. When violations were imposed on the

dependent vectors with groups of size 30 and 45, no empirical distributions were found

significantly different from the nominal F distribution at the 12 < .05 level (See Table 1).

For the equal n experiments, the differences between the empirical and theoretical F

sampling distributions were largest when the sample size was small and became smaller as the

group sizes grew larger. It is possible that this trend, found in the ANCOVA results as well, may be

due to the fact that confidence bands increase when sample size is small. All dependent base

vectors created by IMSL, as one will recall, were tested to exclude extreme vectors with

mathematical characteristics different from those proported. It is possible that when sample sizes

are less than 30, confidence bands are not narrow enough to eliminate all samples that are not

representative of their parent populations.

No significant differences were found in the unbalanced designs having homogeneous

variances. Significant differences did emerge, however, when the unbalanced ANOVA was

combined with even the slightest degree of heterogeneity of variance (group variances as small

as 1:1.5:2). Further analysis revealed two different trends, depending on whether the largest

variance was coupled with the largest or smallest group. Specifically, when the smallest group had

the largest variance, all empirical sampling distributions were significantly less than the theoretical
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F distribution at the p < .01 level of significance. When the largest group contained the largest

variance, however, the opposite trend developed: sampling distributions having heterogeneity

of variances were found to be significantly greater than theoretical F at the p < .01 level.

Effects of Assumption Violations on the Analysis of Covariance Using a Normal Concomitant

Differences between the empirical and nominal F sampling distributions for the ANCOVA

simulations using a normal covariate are found in Table 2. For the balanced design using small but

equal group sizes (n = 15), the only compound violation that had a significant impact on the

resulting empirical sampling distribution was the combination of an extremely skewed and

leptokurtic shape with extreme heterogeneity of variances (ratio of 1:3:5), which was significant at

the p < .05 level. In those simulations that had equal n's of size 30, no significant differences

emerged. Equal n's of 45 showed more of the same; no significant differences were found even

when extreme heterogeneity of variances was combined with unequal regression slopes.

Among the unbalanced ANCOVA simulations involving homogeneity of variances, no

significant differences emerged as long as the regression slopes were equal. When the group

slopes were unequal, however, all analyses were significant at the p< .01 level.

In those ANCOVA simulations involving both equal slopes and heterogeneous variances,

significant differences emerged most at the R < .01 level. Different trends emerged, however,

depending on whether the largest variance was in the largest orsmallest group. When the largest

variance was found in the largest group, the number of type I errors was significantly higher than

what was expected under normal theory. When the largest variance was found in the smallest

group, however, the number of type I errors was significantly less than what would be expected

under normal theory.

When unequal group slopes were coupled with heterogeneous variances a different

pattern emerged. When the largest variance was found in the smallest group, significant

differences (at the p < .01 level) emerged; raw differences that were much higher than when the

largest variance was paired with the smallest group in the equal n simulation. When the largest

variance was paired with the largest group size, however, no significant differences could be

found. It should be mentioned at this point that the largest group correlation (slope) is found in

the third treatment group for both of these situations. Apparently, the coupling of the largest

variance with the largest group size and largest regression slope improves the fit between the

empirical and theoretical sampling distributions, while the coupling of the largest variance with the

smallest group size and the smallest regression slope increases the disparity between the

empirical and theoretical sampling distributions.
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effects of Assumption Violations on the Analysis of Covariance Using a Skewed Concomitant

Differences between the empirical and nominal F sampling distributions for the ANCOVA

simulations using a skewed covariate are found in Table 3. For balanced designs Involving small

groups (n - 15) and a skewed covariate, no significant differences emerged. In fact those

(statistically nonsignificant) differences that did emerge tended to be smaller in magnitude than

those found whe.1 the same dependent vectors were used with normal covariates. The same can

be said for the balanced designs using groups of 30 and 45.

When the unbalanced design was coupled with equal slopes and homogeneity of

variances, no significant differences emerged. When the unbalanced design was coupled with

heterogeneous slopes and homogeneity of variances, however, differences significant at the R <

.01 level did emerge.

When heterogeneity of variance was coupled with equal regression slopes and unequal

group sizes, the patterns loentified originally with use of a normal covariate emerged again.

Significantly less type I error.; emerged when the largest variance was found In the largest group.

However, when the largest variance was paired with the smallest group, there was a significant

increase in the number of type I errors made.

When heterogeneity of variances was coupled with heterogeneous slopes and unequal

n's, patterns emerged which were similar to those identified when the normal covariate was

coupled with unequal slopes. When the largest variance was found in the smallest group,

significant differences (at the 2 < .01 level) emerged; raw differences which were much higher

than when the largest variance was paired with the smallest group in the equal slope situation.

When the largest variance was paired with the largest group size, however, no significant

differences could be found. Again here, like the analyses involving a normal covariate, the

smallest correlation coefficient was found in the group with the smallest size. And again the

coupling of the largest variance with the largest group size and largest regression slope improves

the fit between the empirical and theoretical sampling distributions, while the coupling of the

largest variance with the smallest size and the smallest slope increases the disparity. Once again,

it is interesting to note that in many cases, use of the skewed covariate seemed to improve the fit

between the empirical and nominal F sampling distributions.

FINDINGS AND CONCLUSIONS

Balanced Designs

Previous research (Glass, Peckham and Sanders, 1972; Harwell, Hays, Olds, and

Rubinstein, 1990; etc.) suggest that heterogeneity of variances is the greatest single threat to

robustness. Conventional thought suggests that when a balanced ANOVA or ANCOVA is used,
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problems arise only when the ratio of largest to smallest group variance exceeds three. Meta-

analytic findings by Harwell et al., however, suggest differently: balanced designs may suffer from

inflated type I error rates when the ratio is as small as two.

The group variance ratios used in this simulation were chosen to directly compare Harwell

et al.'s claim against the standard set by Glass et. al. No support was found for Harwell's claim;

quite the contrary, there were almost no significant differences found in any of the balanced

designs, even when the ratio between the largest and smallest group variance was as high as 5.

The results of this simulation when using a balanced design ANOVA or ANCOVA suggest

a robustness far beyond that suggested by Glass et al. The unique methodology employed in

this study may help to explain why. As part of the data generating process, the base vectors that

had skew or kurtosis values significantly different from zero were systematically discarded, and

new ones created. This procedure reduced the probability that the perturbations were a shape

different than proported. Following removal of this sampling noise, the causes for the differences

that remain are easier to isolate and interpret. Most of the studies that Glass et al. reviewed,

however, used a methodology whereby parent populations with the desired characteristics were

created and repeated random samples were drawn. No check was made to insure that the

samples drawn possessed the mathematical properties being tested. Therefore, when significant

differences emerged between the empirical and theoretical F distributions, it was unclear to what

degree the differences were the result of the known mathematical characteristics and at what

point they became product of selected samples that, by the luck of the draw, possess

mathematical properties far different from their parent populations.

The fact that the few significant differences that did arise in the balanced designs did so

among the small group size (n = 15) is also worth noting. The confidence bands, used to screen

out samples with mathematical characteristics different from those to be tested, are widest when

the sample size is small. It is possible that some samples that should have been disgarded were

not because of the wide confidence bands. If this is the case, then the origin of the significant

differences that emerged in the small sample size simulations remains unclear: are they the result

of violations of the assumptions under test, or are they the result of inclusion of extreme samples

with mathematical characteristics different from those being tested?

Games and Lucas (1966) suggested that a skewed dependent is a greater threat to

robustness than a leptokurtic or platykurtic dependent variable. Additionally, they have

suggested that the validity of the F test improves for leptokurtic distributions but suffers when

using platykurtic distributions. Distributional shape, however, did not prove to be a major factor in

influencing type I error rates in this simulation.

Potthoff (1965) suggests that a non-normal concomitant increases the sensitivity of F to

departures from normality in the dependent variable. This research found just the opposite: the
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small (but statistically nonsignifiant) differences that did emerge found analyses using the normal

covariate - not the skewed to be most sensitive to distortions in the dependent variable.

Unbalanced Designs

Whereas the balanced design turned out to be very robust, the same cannot be said of

the unbalanced design. Statistically significant differences emerged in face of almost all

conditions except some that involved only perturbations of shape. Previous research (eg.

Scheffe', 1959; Shields, 1976) have suggested that when heterogeneity of variance is coupled

with unequal n's, the effect of the violation of equal variances will differ in nature depending on

whether the larger group is paired with the larger or smaller variance. Specifically, they suggest

that inflated type I error rates result when there is an inverse relationship between the group size

and its variance, while deflated type I error rates will result when the larger group is paired with the

larger variance.

Glass et al. (1972) suggest that the effects of nonnormal shapes and heterogeneous

variances appear to be additive, something that this research supports. The idea of additive

effects seems to extend beyond the match between distributional shape and heterogeneous

variances, however. For instance, in the unequal n situation the smallest regression slope is

paired with the smallest group size for all analyses. When this combination ( which should

increase the number of type I errors made) occurs jointly with hetercgeneous variances where the

smallest variance is found in the smallest group (which should decrease the nurrber of type I

errors), the net effect is a wash out; that is, no significant differences remain. Conversely, when

the combination of the smallest slope and group size is paired with the largest variance, the

number of type I errors increased dramatically - higher than either one of the violating conditions

alone could have produced.

Concluding Remarks

In summary, for balanced designs the ANOVA and ANCOVA F statistics were found to be

remarkably robust when faced with most of the violations included in this simulation. The degree

to which the F test was robust, however, was surprising. The procedure remained robust even

when the ratio of largest to smallest variance was as high as five. After the systematic removal of

sampling noise due to the chance creation of skewed and/or kurtotic base vectors, F was found to

be far more robust than previously believed. This research, however, reaffirms once again the

findings of many previous studies that suggest that ANOVA and ANCOVA be avoided when

group sizes are not equal.

In terms of specific recommendations to research practitioners using balanced designs,

the ratio of largest to smallest group variance should continue to be checked. If the ratio is less
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than 3, then the researcher need not fear invalid results due to any of the data set violations

included here. If the ratio is between 3 and 5, however, the researcher should lest to see if his or

her dependent data is within the 95% confidence bands surrounding zero skew and kurtosis. If

the dependent's skew and kurtosis values are within this range, then the F statistic should still be

sufficiently robust. If, however, either the skew or kurtotic values fall outside of the 95%

confidence band, then the researcher should consider the use of a statistical procedure with less

stringent assumptions.

In terms of the direction of future research, several questions remain unanswered

concerning the specific findings of this simulation. First, if the balanced designs (for group n's of

30 and above) are sufficiently robust when the largest to smallest group variance ratio is as high as

five, then how high can that ratio get before robustness is significantly affected? Second, for

equal sized samples smaller than size 30, are the confidence bands sufficiently narrow to provide

researchers with the reassurance they need to use ANOVA or ANCOVA when the ratio of largest

to smallest variance is between 3 and 5? Can use of smaller confidence bands (90% or 80%

perhaps?) make up for the smaller sample size? Finally, this research used extremely unequal

group sizes in the unbalanced designs (a difference of 300% between the largest and smallest

groups). What would nappen if the difference between the largest and smallest groups were

smaller? How different can group sizes become before the robustness of the F statistic ic

jeopardized?

Finally, it should be noted that this research deals only with robustness. Robustness,

however, is only the first of two issues that a researcher must consider when choosing a statistical

procedure to analyze his or her data. The second issue involves power, and ultimately reduces to

the following question first suggested in 1959 by Scheffe': which procedure from among those

available will produce the most statistically accurate results in a specific research situation? It is in

this direction that future Monte Carlo research of this genre must direct its attention.
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